School of Law, Kanazawa University Special Lecture on Jurisprudence, Final Examination 10 Feb. 2017, Hidehiko Adachi

- 1. Assume that A=1 and B=1 (A and B are both true) while X=0 and Y=0 (X and Y are both false). Calculate the truth value of each wff below. (6 points)*1
 - (a) $\sim (A \cdot X)$
 - (b) $(\sim B \supset A)$
 - (c) $\sim ((A \supset B) \supset (B \supset Y))$
- 2. Prove each of these arguments to be valid or invalid*2.
 - (a)

A

 $(A \vee B)$

(b)

 $(A \supset B)$

 $(B\supset C)$

 $(A\supset C)$

(c)

 $((A \cdot B) \supset C)$

 \therefore $(B\supset C)$

- 3. Translate these English sentences into wffs. $(4 \text{ points})^{*3}$
 - (a) Something is a cat.
 - (b) Everything is a cat.
 - (c) All dogs are animals.
 - (d) Some logicians are evil.
- 4. Prove each of these arguments to be valid or invalid.* *4

(a)

^{*1} Harry J. Gensler, Introducton to Logic (2nd edn, 2010), 6.3a: 1, 6, 15.

^{*2 7.1}a: 2, 6, 7.2a: 7.

^{*3 8.1}a: 2, 5, 7, 9.

^{*4 8.2}a: 1, 5, 8.3a: 1.

$$(x)Fx$$

$$(x)(Gx \vee Fx)$$

$$(b)$$

$$(x)(Fx \supset Gx)$$

$$(\exists x)Fx$$

$$(\exists x)(Fx \cdot Gx)$$

$$(c)$$

$$(\exists x)Fx$$

$$(x)Fx$$

- 5. Prove each of these arguments to be valid or invalid in S5.* *5
 - (a) $A \\ \therefore & \Diamond A \\ \text{(b)} \\ & \Diamond A \\$
 - ∴ □A
- 6. Say in which systems the argument is valid: T, B, S4, or S5.*6

 - - \therefore $\Diamond \Diamond A$
 - (c) $\Diamond \Box A$ $\therefore \Box A$
- 7. Say whether valid (and give a proof) or invalid (and give a refutation).

$$(A \supset \underline{B})$$
$$\therefore \sim (\underline{A} \cdot \underline{B})$$

^{*5 10.2}a: 2, 10.3a: 1.

^{*6 11.1}a: 1, 2, 4.

Final Examination (70 points)

enrolled students	examinee	avaerage	
9	9	59.3 point	

Overall Score

S(100-90)	A(89-80)	B(79-70)	C(69-60)	D(59-0)	absence
4	2	3	0	0	0